 Skip to content

	Home
	About Me

 Sandwich Bytes
Byte sized wisdom

 	Home
	About Me

Home AWS Website to PDF using AWS Lambda Function URLs

Media Transcoder Using Container Images in AWS Lambda
Reverse Proxy using AWS Lambda

 AWS
Website to PDF using AWS Lambda Function URLs
 Jobin Basani May 3, 2022 May 3, 2022 itemprop="discussionURL"3 Comments
AWS released a nifty feature for Lambda’s recently – Function URLs.
As a serverless compute service, AWS Lambda allows you to write functions in any language(with Docker image support), and execute them without provisioning resources manually.
These functions respond to different events like an HTTP request, or when a DynamoDB table is updated.
A very popular option to trigger the lambda using HTTP is by integrating it with an API gateway or a load balancer. They provide advanced features like request validation, throttling, custom authorizers, caching, etc. And the cost associated with an API gateway may end up more than the cost of executing the lambda function too.
Lambda now allows you to create a function URL easily, and you get an HTTPS endpoint at no additional cost. You can set up IAM authentication or disable it and roll up your authentication mechanism.
	Lambda function URLs have a 15-minute maximum timeout compared to 30 seconds of API gateway
	You cannot create a custom domain. AWS will generate a URL similar to https://<unique-id>.lambda-url.<region>.on.aws
	Provides CORS support

Let’s roll up a quick example by building a lambda function that converts a web page into a PDF file, and triggers it using the function URL!
We will use AWS CDK to define and deploy our infrastructure.
And the lambda function is going to use NodeJS.
With a few lines of Javascript we can develop and deploy our function that converts a webpage to a PDF file.
The chrome-aws-lambda is a very useful library that provides Chromium Binary for AWS Lambda and Google Cloud Functions. Using this, we can run puppeteer in a Lambda function.
Puppeteer is a headless Chrome Node.js API and allows you to do most things that you can do on a desktop browser, like crawling the webpage, UI testing, taking screenshots, and saving as PDF files.
Let’s install these dependencies first.
npm install chrome-aws-lambda puppeteer
and import it to our function.
const chromium = require('chrome-aws-lambda');
The Lambda function URL request and response formats are the same as that of the API gateway and are documented at https://docs.aws.amazon.com/lambda/latest/dg/urls-invocation.html
The query parameters can be read from the queryStringParameters of the event object.
const url = event.queryStringParameters.url;
Let’s create an instance of the Chromium browser.
const browser = await chromium.puppeteer.launch({
 args: chromium.args,
 headless: true,
 ignoreHTTPSErrors: true,
 defaultViewport: chromium.defaultViewport,
 executablePath: await chromium.executablePath,
 });
And navigate to the URL that we need to convert to PDF.
const page = await browser.newPage();
await page.goto(url, { waitUntil: 'networkidle0' });
And finally, generate the PDF.
const buffer = await page.pdf({
 scale: 1,
 displayHeaderFooter: false,
});
The last thing is to send the response. We need to convert the binary data to base64 and set the isBase64Encoded property to true.
return {
 statusCode: 200,
 headers: {
 'Content-type': 'application/pdf',
 },
 body: buffer.toString('base64'),
 isBase64Encoded: true,
 };
And we have our function ready!
Now, let’s deploy this using CDK.
Install the CDK cli if it’s not already installed.
npm install -g aws-cdk
Initialize a new CDK project.
cdk init app --language javascript
And let’s build our stack.
We will make use of the container image support for lambda. Chromium and Puppeteer are pretty heavy libraries and will exceed the 50 MB zipped size limit of lambda. Container images can go up to 10 GB, and it’s straightforward to build one.
Let’s define the Dockerfile.
FROM public.ecr.aws/lambda/nodejs:14

COPY website-to-pdf-function.js package.json package-lock.json ${LAMBDA_TASK_ROOT}

RUN npm install

CMD ["website-to-pdf-function.handler"]
We will also need to bump up the memory size to make sure that Puppeteer is able to load the webpage and generate PDFs correctly. To be safe, let’s use 512 MB. The execution timeout is set to 4 minutes, but any reasonable time can be set instead.
 const websiteToPDFFunction = new lambda.DockerImageFunction(this, 'websiteToPDFFunction', {
 functionName: 'websiteToPDFFunction',
 timeout: cdk.Duration.minutes(4),
 memorySize: 512,
 code: lambda.DockerImageCode.fromImageAsset(path.join(__dirname, '../functions')),
 });
This will build the Dockerfile in the ../functions directory, create an ECR, push the image there, and create a lambda function for you!
The next step is to create a function URL for the lambda, which is pretty easy too.
const websiteToPDFFunctionURL = websiteToPDFFunction.addFunctionUrl({
 authType: lambda.FunctionUrlAuthType.NONE,
});
And let’s output the created URL.
new cdk.CfnOutput(this, 'websiteToPDFFunctionURL', {
 value: websiteToPDFFunctionURL.url,
 description: 'Website to PDF Function URL',
});
Let’s synthesize the Cloudfromation templates and deploy them.
cdk synth
cdk deploy
After the deployment is completed, you will see the function URL in the output.
[100%] success: Published d1f6fc9b1385b546ac0b10a0af983b0b4a336d97f4231808d03af3a5b489aecc:current_account-current_region
WebsiteToPDFStack: creating CloudFormation changeset...

 ✅ WebsiteToPDFStack

✨ Deployment time: 290.84s

Outputs:
WebsiteToPDFStack.websiteToPDFFunctionURL = https://unique-id.lambda-url.ca-central-1.on.aws/
Stack ARN:
arn:aws:cloudformation:ca-central-1:1234567890:stack/WebsiteToPDFStack/777d7f40-ca15-11ec-8cd9-0aaad63835aa

✨ Total time: 292.45s

It’s testing time! In the function URL, provide a URL query parameter with the website that you’d want to convert to PDF.
https://unique-id.lambda-url.ca-central-1.on.aws/?url=https://jobinbasani.com/
Depending on how big the site is, you should be able to access a PDF version of the website that you requested.
In my Desktop chrome browser, it opens a PDF version of the website nicely 🙂
jobinbasani.com rendered as PDFAfter your testing, destroy the stack
cdk destroy
The full source code is available here – https://github.com/jobinbasani/aws-lambda-website-to-pdf

 #aws #cloud #lambda #pdf

 3 Comments
	 andresito

 March 1, 2023 at 3:49 am 1 year ago
 Reply
Thanks for this cool guide. What would you suggest if someone wants to do this with a python based code?

	 Jobin Basani

 March 1, 2023 at 4:05 am 1 year ago
 Reply
This article relies on the Puppeteer library to generate PDF’s. If you are planning to use Python, an unofficial port of Puppeteer is available at https://github.com/pyppeteer/pyppeteer which may be helpful.

	 Jobin Basani

 March 1, 2023 at 4:09 am 1 year ago
 Reply
Actually, that library is no longer maintained – https://playwright.dev/python/ is a better alternative.

Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment
Name*
Email*
Website
Save my name, email, and site URL in my browser for next time I post a comment.

 Search for: Search
Contact
	
	

Recent Posts
	 Reverse Proxy using AWS Lambda
	 Website to PDF using AWS Lambda Function URLs
	 Media Transcoder Using Container Images in AWS Lambda
	 REST API using Quarkus, AWS Lambda, DynamoDB, and Serverless Framework
	 DynamoDB Integration Testing using Testcontainers

Recent Comments
	Jobin Basani on Website to PDF using AWS Lambda Function URLs
	Jobin Basani on Website to PDF using AWS Lambda Function URLs
	andresito on Website to PDF using AWS Lambda Function URLs
	Laura on Install ffmpeg in Raspberry Pi
	Jonathan on Nginx based streaming server on Raspberry Pi

Archives
	December 2023
	May 2022
	January 2021
	September 2020
	August 2020
	May 2020
	November 2019
	December 2018
	January 2017
	March 2016
	August 2015
	November 2014
	September 2014
	August 2014

Categories
	AWS
	Go
	Java
	Jenkins
	Tech

Powered by Esotera & WordPress.
©2024 Sandwich Bytes

 Back to Top

This website uses cookies to improve your experience. I'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy
 Close Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.

 Necessary Necessary
 Always Enabled
 Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

 Non-necessary Non-necessary

 Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

 SAVE & ACCEPT

